463 research outputs found

    Inherent structures and non-equilibrium dynamics of 1D constrained kinetic models: a comparison study

    Full text link
    e discuss the relevance of the Stillinger and Weber approach to the glass transition investigating the non-equilibrium behavior of models with non-trivial dynamics, but with simple equilibrium properties. We consider a family of 1D constrained kinetic models, which interpolates between the asymmetric chain introduced by Eisinger and J\"ackle [Z. Phys. {\bf B84}, 115 (1991)] and the symmetric chain introduced by Fredrickson and Andersen [Phys. Rev. Lett {\bf 53}, 1244 (1984)], and the 1D version of the Backgammon model [Phys. Rev. Lett. {\bf 75}, 1190 (1995)]. We show that the configurational entropy obtained from the inherent structures is the same for all models irrespective of their different microscopic dynamics. We present a detailed study of the coarsening behavior of these models, including the relation between fluctuations and response. Our results suggest that any approach to the glass transition inspired by mean-field ideas and resting on the definition of a configurational entropy must rely on the absence of any growing characteristic coarsening pattern.Comment: 32 pages, 28 figures, RevTe

    Fibreglass wind turbine blades: Damage tolerant design and verification

    Get PDF
    This paper presents the damage tolerant design and verification of a composite materials wind turbine blade expected to be manufactured with the manufacturing process named OneShot Blade® technology. This technology allows the production of wind turbine blades without adhesives and/or bonding processes, leading to a significant reduction in labour hours, costs and materials. Here, the OneShot Blade® oriented design of a 10-meter long fibreglass blade is introduced. Two different configurations (conventional and lightened) have been investigated highlighting their damage tolerant characteristics. Structural performances have been evaluated to verify that the structure complies with the IEC 61400-2 and Germanischer-Lloyd (GL) regulations by considering several loading conditions. Finally, comparisons against a similar wind turbine blade, manufactured by means of a standard process, has been presented, to highlight the advantages of the proposed technology

    Investigating the thermo-mechanical behavior of a ceramic matrix composite wing leading edge by sub-modeling based numerical analyses

    Get PDF
    The thermo-structural design of the wing leading edge of hypersonic vehicles is a very challenging task as high gradients in thermal field, and hence high thermal stresses, are expected. Indeed, when employing passive hot structures based thermal protection systems, very high temperatures (e.g., 1400 °C) are expected on the external surface of the wing leading edge, while the internal structural components are required to not exceed a few hundred degrees Celsius (e.g., 400 °C) at the interface with the internal cold structure. Hence, ceramic matrix composites (CMC) are usually adopted for the manufacturing of the external surface of the wing leading edge since they are characterized by good mechanical properties at very high temperatures (up to 1900 °C) together with an excellent thermal shock resistance. Furthermore, the orthotropic behavior of these materials together with the possibility to tailor their lamination sequence to minimize the heat transferred to internal components, make them very attractive for hot structure based thermal protection systems applications. However, the numerical predictions of the thermo-mechanical behavior of such materials, taking into account the influence of each ply (whose thickness generally ranges between 0.2 and 0.3 mm), can be very expensive from a computational point of view. To overcome this limitation, usually, sub-models are adopted, able to focus on specific and critical areas of the structure where very detailed thermo-mechanical analyses can be performed without significantly affecting the computational efficiency of the global model. In the present work, sub-modeling numerical approaches have been adopted for the analysis of the thermo-mechanical behavior of a ceramic matrix composite wing leading edge of a hypersonic vehicle. The main aim is to investigate the feasibility, in terms of computational efficiency and accuracy of results, in using sub-models for dimensioning complex ceramic matrix components. Hence, a comprehensive study on the size of sub-models and on the choice of their boundaries has been carried out in order to assess the advantages and the limitations in approximating the thermo-mechanical behavior of the investigated global ceramic matrix composite component

    Spin-Glass Model for Inverse Freezing

    Full text link
    We analyze the Blume-Emery-Griffiths model with disordered magnetic interaction displaying the inverse freezing phenomenon. The behaviour of this spin-1 model in crystal field is studied throughout the phase diagram and the transition and spinodal lines for the model are computed using the Full Replica Symmetry Breaking Ansatz that always yelds a thermodynamically stable phase. We compare the results both with the quenched disordered model with Ising spins on lattice gas - where no reentrance takes place - and with the model with generalized spin variables recently introduced by Schupper and Shnerb [Phys. Rev. Lett. 93, 037202 (2004)]. The simplest version of all these models, known as Ghatak-Sherrington model, turns out to hold all the general features characterizing an inverse transition to an amorphous phase, including the right thermodynamic behavior.Comment: 6 pages, 4 figures, to appear in the Proceeding for the X International Workshop on Disordered Systems (2006), Molveno, Ital

    Free-volume kinetic models of granular matter

    Get PDF
    We show that the main dynamical features of granular media can be understood by means of simple models of fragile-glass forming liquid provided that gravity alone is taken into account. In such lattice-gas models of cohesionless and frictionless particles, the compaction and segregation phenomena appear as purely non-equilibrium effects unrelated to the Boltzmann-Gibbs measure which in this case is trivial. They provide a natural framework in which slow relaxation phenomena in granular and glassy systems can be explained in terms of a common microscopic mechanism given by a free-volume kinetic constraint.Comment: 4 pages, 6 figure

    Mixed-mode delamination growth prediction in stiffened CFRP panels by means of a novel fast procedure

    Get PDF
    Carbon fiber reinforced plastic (CFRP) structures are highly sensitive to delaminations, resulting from low energy impacts or manufacturing defects. Non-linear numerical algorithms are mandatory to investigate the complex mechanisms governing the delamination growth phenomena. Although the high computational costs associated to the non-linear algorithms are acceptable in a detail verification design stage, less expensive procedures are desired in a preliminary design stage or during optimization procedure. In this work, a fast numerical procedure, able to determine the delamination growth initiation in composite structures in the framework of a damage tolerant design approach when mixed mode I and II growth is expected, is introduced. The state of the art of the fast delamination growth procedures is critically discussed and improvements to the existing approaches are proposed to extend their applicability and to increase their accuracy. Comparisons with the standard non-linear delamination growth approaches are presented to assess the effectiveness of the proposed novel Fast approach. The results of the proposed fast approach are comparable with the ones obtained by means of standard numerical non-linear technique, allowing up to 95% computational cost saving

    Development of a combined micro-macro mechanics analytical approach to design shape memory alloy spring-based actuators and its experimental validation

    Get PDF
    In this work, an analytical procedure for the preliminary design of shape memory alloy spring-based actuators is investigated. Two static analytical models are considered and interconnected in the frame of the proposed procedure. The first model, based on the works from An, is able to determine the material properties of the SMA components by means of experimental test data and is able to size the SMA component based on the requirements of the system. The second model, based on a work from Spaggiari, helps to design and size an antagonist spring system that allows one to obtain the geometric characteristics of springs (SMA and bias) and the mechanical characteristics of the entire actuator. The combined use of these models allows one to define and size a complex SMA actuator based on the actuation load requirements. To validate the design procedure, static experimental tests have been performed with the entire SMA actuator

    Order Picking Problem: A Model for the Joint Optimisation of Order Batching, Batch Assignment Sequencing, and Picking Routing

    Get PDF
    Background: Order picking is a critical activity in end-product warehouses, particularly using the picker-to-part system, entail substantial manual labor, representing approximately 60% of warehouse work. Methods: This study develops a new linear model to perform batching, which allows for defining, assigning, and sequencing batches and determining the best routing strategy. Its goal is to minimise the completion time and the weighted sum of tardiness and earliness of orders. We developed a second linear model without the constraints related to the picking routing to reduce complexity. This model searches for the best routing using the closest neighbour approach. As both models were too complex to test, the earliest due date constructive heuristic algorithm was developed. To improve the solution, we implemented various algorithms, from multi-start with random ordering to more complex like iterated local search. Results: The proposed models were tested on a real case study where the picking time was reduced by 57% compared to single-order strategy. Conclusions: The results showed that the iterated local search multiple perturbation algorithms could successfully identify the minimum solution and significantly improve the solution initially obtained with the heuristic earliest due date algorithm

    Complexity measurement in two supply chains with different competitive priorities

    Get PDF
    Complexity measurement based on the Shannon information entropy is widely used to evaluate variety and uncertainty in supply chains. However, how to use a complexity measurement to support control actions is still an open issue. This article presents a method to calculate the relative complexity, i.e., the relationship between the current and the maximum possible complexity in a Supply Chain. The method relies on unexpected information requirements to mitigate uncertainty. The article studies two real-world Supply Chains of the footwear industry, one competing by cost and quality, the other by flexibility, dependability, and innovation. The second is twice as complex as the first, showing that competitive priorities influence the complexity of the system and that lower complexity does not ensure competitivity

    A Fuzzy Logic Control application to the Cement Industry

    Get PDF
    A case study on continuous process control based on fuzzy logic and supported by expert knowledge is proposed. The aim is to control the coal-grinding operations in a cement manufacturing plant. Fuzzy logic is based on linguistic variables that emulate human judgment and can solve complex modeling problems subject to uncertainty or incomplete information. Fuzzy controllers can handle control problems when an accurate model of the process is unavailable, ill-defined, or subject to excessive parameter variations. The system implementation resulted in productivity gains and energy consumption reductions of 3% and 5% respectively, in line with the literature related to similar applications
    • …
    corecore